

CMSC 201 – Computer Science I for Majors Page 1

CMSC 201 Spring 2016
Lab 12 – Classes and Objects

Assignment: Lab 12 – Classes and Objects
Due Date: During discussion, May 2nd through May 5th
Value: 10 points

Part 1: Introduction to Classes

As we have discussed in our lectures, classes are structures that allow us to
group together related data and functions which act on the data. They act as a
blueprint for a specific thing including the related attributes and functions of
that thing. When we create an instance of the class, we call it an object. The
two main parts of a class are the data members (class variables and instance
variables) and the methods (functions).

The data members (class variables and instance variables) are the attributes
that describe whatever the class is. Class variables are attributes that describe
all instances of that class. Instance variables are attributes of a specific
instance of a class.

Methods are functions in a class. The methods of a class look and act like
special functions that are designed to be used specifically on an object. There
are some special methods that we use to help to create an instance of a class
called a constructor. The constructor method that we use is called __init__

and it is used to define the initial state of the object.

CMSC 201 – Computer Science I for Majors Page 2

Let’s look at an example:

class song:

 def __init__(self, lyrics):

 self.lyrics = lyrics

 def sing_me_a_song(self):

 for line in self.lyrics:

 print(line)

 print() # empty line at end

wildDream = song(["He said let's get out of this town",

 "Drive out of the city",

 "Away from the crowds"])

bulls_on_parade = song(["They rally around tha family",

 "With pockets full of shells"])

wildDream.sing_me_a_song()

bulls_on_parade.sing_me_a_song()

And the output:

bash-4.1$ python ex1.py

He said let's get out of this town

Drive out of the city

Away from the crowds

They rally around tha family

With pockets full of shells

CMSC 201 – Computer Science I for Majors Page 3

And a diagram defining each of the parts:

CMSC 201 – Computer Science I for Majors Page 4

Part 2: Introduction to UML

Throughout the semester, we have been talking about the characteristics of
writing good code. One thing that we have tried to emphasize throughout is the
notion of design. We don’t want to sit down and just try to write the code from
scratch but rather we should try to plan our approach as to how to try and solve
the problem at hand. Until now, we have discussed some simple techniques
that we can use to help design our solution including flowcharts and
pseudocode. Both of these offer us the ability to try and describe a solution to a
problem either by using a diagram (flowchart) or using a written description
(pseudocode). The Unified Modeling Language (UML) is another way that
we can describe the solution to a problem using a more standardized
approach.

UML is a modeling language that is used to describe the architecture of an
application. UML uses a variety of diagrams to describe the structure and/or
the behavior of the software. Structure diagrams describe the things that must
be present in the system being modeled. Behavior diagrams describes what
must happen in the system being modeled. There are 14 different types of
UML diagrams commonly used (7 structural and 7 behavior). Figure 1 shows a
variety of UML diagrams (Wikipedia, 2015).

Figure 1. UML Diagrams

CMSC 201 – Computer Science I for Majors Page 5

For this lab, we are focused on classes and so we will focus on class
diagrams. Class diagrams show the classes of the software including the
attributes, methods, and relationships between classes. Class diagrams can be
used to show many characteristics of a class. They can even be used to show
the relationship between classes.

Here is an example of a simple class diagram for a single class and the
corresponding code:

CMSC 201 – Computer Science I for Majors Page 6

Part 4: The “Ong” Language

The “Ong” language is a childish encoding of English (similar to Pig Latin) that
adheres to the following rules:

1. The vowels are ‘a’, ‘e’, ‘i’, ‘o’, ‘u’. All other letters are consonants. For
example, “yearly” has two vowels (‘e’ and ‘a’) and four consonants (the
first ‘y’, ‘r’, ‘l’, and the second ‘y’).

2. For each vowel, make no change to the letter. For each consonant in the
word, add “ong” after each consonant. For example, “Candy” would be
“Conganongdongyong”.

There is more information about the “ong” language here:
http://www.wikihow.com/Learn-to-Speak-ONG

http://www.wikihow.com/Learn-to-Speak-ONG

CMSC 201 – Computer Science I for Majors Page 7

Part 5: Creating the “Ong” Translator

For the hands-on part of the lab, we are going to use our techniques to try and
generate the code required to create the “ong” language translator. For this
effort, you will be building a class with one attribute, one constructor, and two
methods (isVowel() and ongTranslate()). Here is the class diagram for

the program:

We are going to give you the pseudocode to build each of the two functions
(isVowel(letter) and translateOng())

isVowel(letter) – This is a simple function that just checks to see if the

letter is a vowel (a, e, i, o, or u). Returns either True or False.

translateOng() – This function loops through each letter in a string to

decide if it is a vowel or not and either does nothing (vowel) or adds “ong”
(consonants). Prints the output string when completed.

In this case, main() just asks the user for the word that they would like to

translate.

Example output:

-bash-4.1$ python ong.py

Enter a string to translate: Baltimore

Bongalongtongimongoronge

-bash-4.1$

Ong

__init__(word)

isVowel(letter)

word: string

translateOng()

CMSC 201 – Computer Science I for Majors Page 8

Part 6: Completing Your Lab

To test your program, first enable Python 3, then run ong.py. Test your code

to make sure that it runs both encryption and decryption functions. Take the
output of the encryption function to make sure that the decryption function
returns what you originally input.

Since this is an in-person lab, you do not need to use the submit command to

complete your lab. Instead, raise your hand to let your TA know that you are
finished.

They will come over and check your work – they may ask you to run your
program for them, and they may also want to see your code. Once they’ve
checked your work, they’ll give you a score for the lab, and you are free to
leave.

IMPORTANT: If you leave the lab without the TA checking your work, you will
receive a zero for this week’s lab. Make sure you have been given a grade
before you leave.

References:
Wiki-How (2015). “How to Learn to Speak ONG”. Retrieved from
http://www.wikihow.com/Learn-to-Speak-ONG
White, W. (2015). “Lab 5”. Retrieved from

http://www.cs.cornell.edu/courses/cs1110/2015fa/labs/

http://www.wikihow.com/Learn-to-Speak-ONG
http://www.cs.cornell.edu/courses/cs1110/2015fa/labs/

